
AutoGL
Release v0.2.0rc0

THUMNLab/aglteam

Jul 11, 2021

TUTORIAL

1 AutoGL 1

2 Installation 3
2.1 Requirements . 3
2.2 Installation . 3

3 Modules 5
3.1 Quick Start . 5
3.2 AutoGL Dataset . 7
3.3 AutoGL Feature Engineering . 9
3.4 AutoGL Model . 11
3.5 AutoGL Trainer . 16
3.6 Hyper Parameter Optimization . 20
3.7 Neural Architecture Search . 23
3.8 Ensemble . 28
3.9 AutoGL Solver . 29
3.10 autogl.data . 33
3.11 autogl.datasets . 38
3.12 autogl.module.feature . 38
3.13 autogl.module.model . 38
3.14 autogl.module.train . 38
3.15 autogl.module.hpo . 38
3.16 autogl.module.nas . 38
3.17 autogl.module.ensemble . 38
3.18 autogl.solver . 38

4 Indices and tables 39

Python Module Index 41

Index 43

i

ii

CHAPTER

ONE

AUTOGL

Actively under development by @THUMNLab

AutoGL is developed for researchers and developers to quickly conduct autoML on the graph datasets & tasks.

The workflow below shows the overall framework of AutoGL.

AutoGL uses AutoGL Dataset to maintain datasets for graph-based machine learning, which is based on the dataset
in PyTorch Geometric with some support added to corporate with the auto solver framework.

Different graph-based machine learning tasks are solved by different AutoGL Solvers , which make use of
four main modules to automatically solve given tasks, namely Auto Feature Engineer, Auto Model, Neural
Architecture Search, HyperParameter Optimization, and Auto Ensemble.

1

AutoGL, Release v0.2.0rc0

2 Chapter 1. AutoGL

CHAPTER

TWO

INSTALLATION

2.1 Requirements

Please make sure you meet the following requirements before installing AutoGL.

1. Python >= 3.6.0

2. PyTorch (>=1.6.0)

see PyTorch for installation.

3. PyTorch Geometric (>=1.7.0)

see PyTorch Geometric for installation.

2.2 Installation

2.2.1 Install from pip & conda

Run the following command to install this package through pip.

pip install autogl

2.2.2 Install from source

Run the following command to install this package from the source.

git clone https://github.com/THUMNLab/AutoGL.git
cd AutoGL
python setup.py install

3

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

AutoGL, Release v0.2.0rc0

2.2.3 Install for development

If you are a developer of the AutoGL project, please use the following command to create a soft link, then you can
modify the local package without installation again.

pip install -e .

4 Chapter 2. Installation

CHAPTER

THREE

MODULES

In AutoGL, the tasks are solved by corresponding solvers, which in general do the following things:

1. Preprocess and feature engineer the given datasets. This is done by the module named auto feature engineer,
which can automatically add/delete useful/useless attributes in the given datasets. Some topological features may
also be extracted & combined to form stronger features for current tasks.

2. Find the best suitable model architectures through neural architecture search. This is done by modules named
nas. AutoGL provides several search spaces, algorithms and estimators for finding the best architectures.

2. Automatically train and tune popular models specified by users. This is done by modules named auto model
and hyperparameter optimization. In the auto model, several commonly used graph deep models are pro-
vided, together with their hyperparameter spaces. These kinds of models can be tuned using hyperparameter
optimization module to find the best hyperparameter for the current task.

3. Find the best way to ensemble models found and trained in the last step. This is done by the module named auto
ensemble. The suitable models available are ensembled here to form a more powerful learner.

3.1 Quick Start

This tutorial will help you quickly go through the concepts and usages of important classes in AutoGL. In this tutorial,
you will conduct a quick auto graph learning on dataset Cora.

3.1.1 AutoGL Learning

Based on the concept of autoML, auto graph learning aims at automatically solve tasks with data represented by
graphs. Unlike conventional learning frameworks, auto graph learning, like autoML, does not need humans inside
the experiment loop. You only need to provide the datasets and tasks to the AutoGL solver. This framework will
automatically find suitable methods and hyperparameters for you.

The diagram below describes the workflow of AutoGL framework.

To reach the aim of autoML, our proposed auto graph learning framework is organized as follows. We have dataset
to maintain the graph datasets given by users. A solver object needs to be built for specifying the target tasks. Inside
solver, there are five submodules to help complete the auto graph tasks, namely auto feature engineer, auto
model, neural architecture search, hyperparameter optimization and auto ensemble, which will au-
tomatically preprocess/enhance your data, choose and optimize deep models and ensemble them in the best way for
you.

Let’s say you want to conduct an auto graph learning on dataset Cora. First, you can easily get the Cora dataset using
the dataset module:

5

https://graphsandnetworks.com/the-cora-dataset/

AutoGL, Release v0.2.0rc0

from autogl.datasets import build_dataset_from_name
cora_dataset = build_dataset_from_name('cora')

The dataset will be automatically downloaded for you. Please refer to AutoGL Dataset or autogl.datasets for more
details of dataset constructions, available datasets, add local datasets, etc.

After deriving the dataset, you can build a node classification solver to handle auto training process:

import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from autogl.solver import AutoNodeClassifier
solver = AutoNodeClassifier(

feature_module='deepgl',
graph_models=['gcn', 'gat'],
hpo_module='anneal',
ensemble_module='voting',
device=device

)

In this way, we build a node classification solver, which will use deepgl as its feature engineer, and use
anneal hyperparameter optimizer to optimize the given three models ['gcn','gat']. The derived models will
then be ensembled using voting ensembler. Please refer to the corresponding tutorials or documentation to see the
definition and usages of available submodules.

Then, you can fit the solver and then check the leaderboard:

solver.fit(cora_dataset, time_limit=3600)
solver.get_leaderboard().show()

The time_limit is set to 3600 so that the whole auto graph process will not exceed 1 hour. solver.show() will
present the models maintained by solver, with their performances on the validation dataset.

Then, you can make the predictions and evaluate the results using the evaluation functions provided:

from autogl.module.train import Acc
predicted = solver.predict_proba()
print('Test accuracy: ', Acc.evaluate(predicted,

cora_dataset.data.y[cora_dataset.data.test_mask].cpu().numpy()))

Note: You don’t need to pass the cora_dataset again when predicting, since the dataset is remembered by the
solver and will be reused when no dataset is passed at predicting. However, you can also pass a new dataset when
predicting, and the new dataset will be used instead of the remembered one. Please refer to AutoGL Solver or au-
togl.solver for more details.

6 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

3.2 AutoGL Dataset

We import the module of datasets from CogDL and PyTorch Geometric and add support for datasets from OGB. One
can refer to the usage of creating and building datasets via the tutorial of CogDL, PyTorch Geometric, and OGB.

3.2.1 Supporting datasets

AutoGL now supports the following benchmarks for different tasks:

Semi-supervised node classification: Cora, Citeseer, Pubmed, Amazon Computers*, Amazon Photo*, Coauthor CS*,
Coauthor Physics*, Reddit *: using utils.random_splits_mask_class for splitting dataset is recommended.). For detailed
information for supporting datasets, please kindly refer to PyTorch Geometric Dataset.

Dataset PyG CogDL x y edge_index edge_attr | train/val/test
node

train/val/test
mask

Cora X X X X X X
Citeseer X X X X X X
Pubmed X X X X X X
Amazon Com-
puters

X X X X X

Amazon Photo X X X X X
Coauthor CS X X X X X
Coauthor Physics X X X X X
Reddit X X X X X X

Graph classification: MUTAG, IMDB-B, IMDB-M, PROTEINS, COLLAB

Dataset PyG CogDL x y edge_index edge_attr
MUTAG X X X X X
IMDB-B X X X
IMDB-M X X X
PROTEINS X X X X
COLLAB X X X

TODO: Supporting all datasets from PyTorch Geometric.

3.2.2 OGB datasets

AutoGL also supports the popular benchmark on OGB for node classification and graph classification tasks. For the
summary of OGB datasets, please kindly refer to the their docs.

Since the loss and evaluation metric used for OGB datasets vary among different tasks, we also add string properties
of datasets for identification:

3.2. AutoGL Dataset 7

https://cogdl.readthedocs.io/en/latest/tutorial.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_dataset.html
https://ogb.stanford.edu/docs/dataset_overview/
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://ogb.stanford.edu/docs/nodeprop/

AutoGL, Release v0.2.0rc0

Dataset dataset.metric datasets.loss
ogbn-products Accuracy nll_loss
ogbn-proteins ROC-AUC BCEWithLogitsLoss
ogbn-arxiv Accuracy nll_loss
ogbn-papers100M Accuracy nll_loss
ogbn-mag Accuracy nll_loss
ogbg-molhiv ROC-AUC BCEWithLogitsLoss
ogbg-molpcba AP BCEWithLogitsLoss
ogbg-ppa Accuracy CrossEntropyLoss
ogbg-code F1 score CrossEntropyLoss

3.2.3 Create a dataset via URL

If your dataset is the same as the ‘ppi’ dataset, which contains two matrices: ‘network’ and ‘group’, you can register
your dataset directly use the above code. The default root for downloading dataset is ~/.cache-autogl, you can also
specify the root by passing the string to the path in build_dataset(args, path) or build_dataset_from_name(dataset,
path).

following code-snippet is from autogl/datasets/matlab_matrix.py

@register_dataset("ppi")
class PPIDataset(MatlabMatrix):

def __init__(self, path):
dataset, filename = "ppi", "Homo_sapiens"
url = "http://snap.stanford.edu/node2vec/"
super(PPIDataset, self).__init__(path, filename, url)

You should declare the name of the dataset, the name of the file, and the URL, where our script can download the
resource. Then you can use either build_dataset(args, path) or build_dataset_from_name(dataset, path) in your task
to build a dataset with corresponding parameters.

3.2.4 Create a dataset locally

If you want to test your local dataset, we recommend you to refer to the docs on creating PyTorch Geometric dataset.

You can simply inherit from torch_geometric.data.InMemoryDataset to create an empty dataset, then create some
torch_geometric.data.Data objects for your data and pass a regular python list holding them, then pass them to
torch_geometric.data.Dataset or torch_geometric.data.DataLoader. Let’s see this process in a simplified example:

from typing import Iterable
from torch_geometric.data.data import Data
from autogl.datasets import build_dataset_from_name
from torch_geometric.data import InMemoryDataset

class MyDataset(InMemoryDataset):
def __init__(self, datalist) -> None:

super().__init__()
self.data, self.slices = self.collate(datalist)

Create your own Data objects

(continues on next page)

8 Chapter 3. Modules

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_dataset.html

AutoGL, Release v0.2.0rc0

(continued from previous page)

for example, if you have edge_index, features and labels
you can create a Data as follows
See pytorch geometric more info of Data
data = Data()
data.edge_index = edge_index
data.x = features
data.y = labels

create a list of Data object
data_list = [data, Data(...), ..., Data(...)]

Initialize AutoGL Dataset with your own data
myData = MyDataset(data_list)

3.3 AutoGL Feature Engineering

We provide a series of node and graph feature engineers for you to compose within a feature engineering pipeline. An
automatic feature engineering algorithm is also provided.

3.3.1 Quick Start

1. Choose a dataset.
from autogl.datasets import build_dataset_from_name
data = build_dataset_from_name('cora')

2. Compose a feature engineering pipeline
from autogl.module.feature import BaseFeature,AutoFeatureEngineer
from autogl.module.feature.generators import GeEigen
from autogl.module.feature.selectors import SeGBDT
from autogl.module.feature.graph import SgNetLSD
you may compose feature engineering bases through BaseFeature.compose
fe = BaseFeature.compose([
GeEigen(size=32) ,
SeGBDT(fixlen=100),
SgNetLSD()
])
or just through '&' operator
fe = fe & AutoFeatureEngineer(fixlen=200,max_epoch=3)

3. Fit and transform the data
fe.fit(data)
data1=fe.transform(data,inplace=False)

3.3. AutoGL Feature Engineering 9

AutoGL, Release v0.2.0rc0

3.3.2 List of FE base names

Now three kinds of feature engineering bases are supported,namely generators, selectors , graph.You can import
bases from according module as is mentioned in the Quick Start part. Or you may want to just list names of bases
in configurations or as arguments of the autogl solver.

1. generators

Base Description
graphlet concatenate local graphlet numbers as features.
eigen concatenate Eigen features.
pagerank concatenate Pagerank scores.
PYGLocalDegreeProfile concatenate Local Degree Profile features.
PYGNormalizeFeatures Normalize all node features
PYGOneHotDegree concatenate degree one-hot encoding.
onehot concatenate node id one-hot encoding.

2. selectors

Base Description
SeFilterConstant delete all constant and one-hot encoding node features.
gbdt select top-k important node features ranked by Gradient Descent Decision Tree.

3. graph

netlsd is a graph feature generation method. please refer to the according document.

A set of graph feature extractors implemented in NetworkX are wrapped, please re-
fer to NetworkX for details. (NxLargeCliqueSize, NxAverageClusteringApproximate,
NxDegreeAssortativityCoefficient, NxDegreePearsonCorrelationCoefficient, NxHasBridge ,``Nx-
GraphCliqueNumber``, NxGraphNumberOfCliques, NxTransitivity, NxAverageClustering, NxIsConnected,
NxNumberConnectedComponents, NxIsDistanceRegular, NxLocalEfficiency, NxGlobalEfficiency,
NxIsEulerian)

The taxonomy of base types is based on the way of transforming features. generators concatenate the original
features with ones newly generated or just overwrite the original ones. Instead of generating new features , selectors
try to select useful features and keep learned selecting methods in the base itself. The former two types of bases can
be exploited in node or edge level (modification upon each node or edge feature) ,while graph focuses on feature
engineering in graph level (modification upon each graph feature). For your convenience in further development,you
may want to design a new item by inheriting one of them. Of course, you can directly inherit the BaseFeature as well.

3.3.3 Create Your Own FE

You can create your own feature engineering object by simply inheriting one of feature engineering base types ,namely
generators, selectors , graph, and overloading methods _fit and _transform.

for example : create a node one-hot feature.
from autogl.module.feature.generators.base import BaseGenerator
import numpy as np
class GeOnehot(BaseGenerator):

def __init__(self):
super(GeOnehot,self).__init__(data_t='np',multigraph=True,subgraph=False)
data type in mid is 'numpy',
and it can be used for multigraph,

(continues on next page)

10 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

but not suitable for subgraph feature extraction.

def _fit(self):
pass # nothing to train or memorize

def _transform(self, data):
fe=np.eye(data.x.shape[0])
data.x=np.concatenate([data.x,fe],axis=1)
return data

3.4 AutoGL Model

In AutoGL, we use model and automodel to define the logic of graph nerual networks and make it compatible with
hyper parameter optimization. Currently we support the following models for given tasks.

Tasks Models
Node Classification gcn, gat, sage
Graph Classification gin, topk
Link Prediction gcn, gat, sage

3.4.1 Lazy Initialization

In current AutoGL pipeline, some important hyper-parameters related with model cannot be set outside before the
pipeline (e.g. input dimensions, which can only be caluclated during running after feature engineered). Therefore,
in automodel, we use lazy initialization to initialize the core model. When the automodel initialization method
__init__() is called with argument init be False, only (part of) the hyper-parameters will be set. The automodel
will have its core model only after initialize() is explicitly called, which will be done automatically in solver
and from_hyper_parameter(), after all the hyper-parameters are set properly.

3.4.2 Define your own model and automodel

We highly recommend you to define both model and automodel, although you only need your automodel to commu-
nicate with solver and trainer. The model will be responsible for the parameters initialization and forward logic
declaration, while the automodel will be responsible for the hyper-parameter definiton and organization.

General customization

Let’s say you want to implement a simple MLP for node classification and want to let AutoGL find the best hyper-
parameters for you. You can first define the logics assuming all the hyper-parameters are given.

import torch

define mlp model, need to inherit from torch.nn.Module
class MyMLP(torch.nn.Module):

assume you already get all the hyper-parameters
def __init__(self, in_channels, num_classes, layer_num, dim):

super().__init__()
(continues on next page)

3.4. AutoGL Model 11

AutoGL, Release v0.2.0rc0

(continued from previous page)

if layer_num == 1:
ops = [torch.nn.Linear(in_channels, num_classes)]

else:
ops = [torch.nn.Linear(in_channels, dim)]
for i in range(layer_num - 2):

ops.append(torch.nn.Linear(dim, dim))
ops.append(torch.nn.Linear(dim, num_classes))

self.core = torch.nn.Sequential(*ops)

this method is required
def forward(self, data):

data: torch_geometric.data.Data
assert hasattr(data, 'x'), 'MLP only support graph data with features'
x = data.x
return torch.nn.functional.log_softmax(self.core(x))

After you define the logic of model, you can now define your automodel to manage the hyper-parameters.

from autogl.module.model import BaseModel

define your automodel, need to inherit from BaseModel
class MyAutoMLP(BaseModel):

def __init__(self):
(required) make sure you call __init__ of super with init argument properly␣

→˓set.
if you do not want to initialize inside __init__, please pass False.
super().__init__(init=False)

(required) define the search space
self.space = [

{'parameterName': 'layer_num', 'type': 'INTEGER', 'minValue': 1, 'maxValue':␣
→˓5, 'scalingType': 'LINEAR'},

{'parameterName': 'dim', 'type': 'INTEGER', 'minValue': 64, 'maxValue': 128,
→˓'scalingType': 'LINEAR'}

]

set default hyper-parameters
self.layer_num = 2
self.dim = 72

for the hyper-parameters that are related with dataset, you can just set them␣
→˓to None

self.num_classes = None
self.num_features = None

(required) since we don't know the num_classes and num_features until we see␣
→˓the dataset,

we cannot initialize the models when instantiated. the initialized will be set␣
→˓to False.

self.initialized = False

(continues on next page)

12 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

(required) set the device of current auto model
self.device = torch.device('cuda')

(required) get current hyper-parameters of this automodel
need to return a dictionary whose keys are the same with self.space
def get_hyper_parameter(self):

return {
'layer_num': self.layer_num,
'dim': self.dim

}

(required) override to interact with num_classes
def get_num_classes(self):

return self.num_classes

(required) override to interact with num_classes
def set_num_classes(self, n_classes):

self.num_classes = n_classes

(required) override to interact with num_features
def get_num_features(self):

return self.num_features

(required) override to interact with num_features
def set_num_features(self, n_features):

self.num_features = n_features

(required) instantiate the core MLP model using corresponding hyper-parameters
def initialize(self):

(required) you need to make sure the core model is named as `self.model`
self.model = MyMLP(

in_channels = self.num_features,
num_classes = self.num_classes,
layer_num = self.layer_num,
dim = self.dim

).to(self.device)

self.initialized = True

(required) override to create a copy of model using provided hyper-parameters
def from_hyper_parameter(self, hp):

hp is a dictionary that contains keys and values corrsponding to your self.
→˓space

in this case, it will be in form {'layer_num': XX, 'dim': XX}

create a new instance
ret = self.__class__()

set the hyper-parameters related to dataset and device
ret.num_classes = self.num_classes
ret.num_features = self.num_features
ret.device = self.device

(continues on next page)

3.4. AutoGL Model 13

AutoGL, Release v0.2.0rc0

(continued from previous page)

set the hyper-parameters according to hp
ret.layer_num = hp['layer_num']
ret.dim = hp['dim']

initialize it before returning
ret.initialize()

return ret

Then, you can use this node classification model as part of AutoNodeClassifier solver.

from autogl.solver import AutoNodeClassifier

solver = AutoNodeClassifier(graph_models=(MyAutoMLP(),))

The model for graph classification is generally the same, except that you can now also re-
ceive the num_graph_features (the dimension of the graph-level feature) through overriding
set_num_graph_features(self, n_graph_features) of BaseModel. Also, please remember to return
graph-level logits instead of node-level one in forward() of model.

Model for link prediction

For link prediction, the definition of model is a bit different with the common forward definition. You need to implement
the lp_encode(self, data) and lp_decode(self, x, pos_edge_index, neg_edge_index) to interact with
LinkPredictionTrainer and AutoLinkPredictor. Taking the class MyMLP defined above for example, if you want
to perform link prediction:

class MyMLPForLP(torch.nn.Module):
num_classes is removed since it is invalid for link prediction
def __init__(self, in_channels, layer_num, dim):

super().__init__()
ops = [torch.nn.Linear(in_channels, dim)]
for i in range(layer_num - 1):

ops.append(torch.nn.Linear(dim, dim))

self.core = torch.nn.Sequential(*ops)

(required) for interaction with link prediction trainer and solver
def lp_encode(self, data):

return self.core(data.x)

(required) for interaction with link prediction trainer and solver
def lp_decode(self, x, pos_edge_index, neg_edge_index):

first, get all the edge_index need calculated
edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
then, use dot-products to calculate logits, you can use whatever decode method␣

→˓you want
logits = (x[edge_index[0]] * x[edge_index[1]]).sum(dim=-1)
return logits

class MyAutoMLPForLP(MyAutoMLP):
(continues on next page)

14 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

def initialize(self):
init MyMLPForLP instead of MyMLP
self.model = MyMLPForLP(

in_channels = self.num_features,
layer_num = self.layer_num,
dim = self.dim

).to(self.device)

self.initialized = True

Model with sampling support

Towards efficient representation learning on large-scale graph, AutoGL currently support node classification using
sampling techniques including node-wise sampling, layer-wise sampling, and graph-wise sampling. See more about
sampling in AutoGL Trainer.

In order to conduct node classification using sampling technique with your custom model, further adaptation and mod-
ification are generally required. According to the Message Passing mechanism of Graph Neural Network (GNN),
numerous nodes in the multi-hop neighborhood of evaluation set or test set are potentially involved to evaluate the
GNN model on large-scale graph dataset. As the representations for those numerous nodes are likely to occupy large
amount of computational resource, the common forwarding process is generally infeasible for model evaluation on
large-scale graph. An iterative representation learning mechanism is a practical and feasible way to evaluate Sequen-
tial Model, which only consists of multiple sequential layers, with each layer taking a Data aggregate as input. The
input Data has the same functionality with torch_geometric.data.Data, which conventionally provides properties
x, edge_index, and optional edge_weight. If your custom model is composed of concatenated layers, you would bet-
ter make your model inherit ClassificationSupportedSequentialModel to utilize the layer-wise representation
learning mechanism to efficiently conduct representation learning for your custom sequential model.

import autogl
from autogl.module.model.base import ClassificationSupportedSequentialModel

override Linear so that it can take graph data as input
class Linear(torch.nn.Linear):

def forward(self, data):
return super().forward(data.x)

class MyMLPSampling(ClassificationSupportedSequentialModel):
def __init__(self, in_channels, num_classes, layer_num, dim):

super().__init__()
if layer_num == 1:

ops = [Linear(in_channels, num_classes)]
else:

ops = [Linear(in_channels, dim)]
for i in range(layer_num - 2):

ops.append(Linear(dim, dim))
ops.append(Linear(dim, num_classes))

self.core = torch.nn.ModuleList(ops)

(required) override sequential_encoding_layers property to interact with sampling
@property

(continues on next page)

3.4. AutoGL Model 15

AutoGL, Release v0.2.0rc0

(continued from previous page)

def sequential_encoding_layers(self) -> torch.nn.ModuleList:
return self.core

(required) define the encode logic of classification for sampling
def cls_encode(self, data):

if you use sampling, the data will be passed in two possible ways,
you can judge it use following rules
if hasattr(data, 'edge_indexes'):

the edge_indexes are a list of edge_index, one for each layer
edge_indexes = data.edge_indexes
edge_weights = [None] * len(self.core) if getattr(data, 'edge_weights',␣

→˓None) is None else data.edge_weights
else:

the edge_index and edge_weight will stay the same as default
edge_indexes = [data.edge_index] * len(self.core)
edge_weights = [getattr(data, 'edge_weight', None)] * len(self.core)

x = data.x
for i in range(len(self.core)):

data = autogl.data.Data(x=x, edge_index=edge_indexes[i])
data.edge_weight = edge_weights[i]
x = self.sequential_encoding_layers[i](data)

return x

(required) define the decode logic of classification for sampling
def cls_decode(self, x):

return torch.nn.functional.log_softmax(x)

3.5 AutoGL Trainer

AutoGL project use trainer to handle the auto-training of tasks. Currently, we support the following tasks:

• NodeClassificationTrainer for semi-supervised node classification

• GraphClassificationTrainer for supervised graph classification

• LinkPredictionTrainer for link prediction

3.5.1 Lazy Initialization

Similar reason to :ref:model, we also use lazy initialization for all trainers. Only (part of) the hyper-parameters will
be set when __init__() is called. The trainer will have its core model only after initialize() is explicitly
called, which will be done automatically in solver and duplicate_from_hyper_parameter(), after all the hyper-
parameters are set properly.

16 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

3.5.2 Train and Predict

After initializing a trainer, you can train it on the given datasets.

We have given the training and testing functions for the tasks of node classification, graph classification, and link
prediction up to now. You can also create your tasks following the similar patterns with ours. For training, you need
to define train_only() and use it in train(). For testing, you need to define predict_proba() and use it in
predict().

The evaluation function is defined in evaluate(), you can use your our evaluation metrics and methods.

3.5.3 Node Classification with Sampling

According to various present studies, training with spatial sampling has been demonstrated as an efficient technique
for representation learning on large-scale graph. We provide implementations for various representative sampling
mechanisms including Neighbor Sampling, Layer Dependent Importance Sampling (LADIES), and GraphSAINT. With
the leverage of various efficient sampling mechanisms, users can utilize this library on large-scale graph dataset, e.g.
Reddit.

Specifically, as various sampling techniques generally require model to support some layer-wise processing in forward-
ing, now only the provided GCN and GraphSAGE models are ready for Node-wise Sampling (Neighbor Sampling) and
Layer-wise Sampling (LADIES). More models and more tasks are scheduled to support sampling in future version.

• Node-wise Sampling (GraphSAGE) Both GCN and GraphSAGE models are supported.

• Layer-wise Sampling (Layer Dependent Importance Sampling) Only the GCN model is supported in current
version.

• Subgraph-wise Sampling (GraphSAINT) As The GraphSAINT sampling technique have no specific require-
ments for model to adopt, most of the available models are feasible for adopting GraphSAINT technique.
However, the prediction process is a potential bottleneck or even obstacle when the GraphSAINT tech-
nique is actually applied on large-scale graph, thus the the model to adopt is better to support layer-wise
prediction, and the provided GCN model already meet that enhanced requirement. According to empirical
experiments, the implementation of GraphSAINT now has the leverage to support an integral graph smaller
than the Flickr graph data.

The sampling techniques can be utilized by adopting corresponding trainer
NodeClassificationGraphSAINTTrainer, NodeClassificationLayerDependentImportanceSamplingTrainer,
and NodeClassificationNeighborSamplingTrainer. You can either specify the corresponding name of trainer
in YAML configuration file or instantiate the solver AutoNodeClassifier with the instance of specific trainer.
However, please make sure to manange some key hyper-paramters properly inside the hyper-parameter space.
Specifically:

For NodeClassificationLayerDependentImportanceSamplingTrainer, you need to set the hyper-parameter
sampled_node_sizes properly. The space of sampled_node_sizes should be a list of the same size with your
Sequential Model. For example, if you have a model with layer number 4, you need to pass the hyper-parameter space
properly:

solver = AutoNodeClassifier(
graph_models=(A_MODEL_WITH_4_LAYERS,),
default_trainer='NodeClassificationLayerDependentImportanceSamplingTrainer',
trainer_hp_space=[

(required) you need to set the trainer_hp_space properly.
{

'parameterName': 'sampled_node_sizes',
'type': 'NUMERICAL_LIST',

(continues on next page)

3.5. AutoGL Trainer 17

AutoGL, Release v0.2.0rc0

(continued from previous page)

"numericalType": "INTEGER",
"length": 4, # same with the layer number of your model
"minValue": [200,200,200,200],
"maxValue": [1000,1000,1000,1000],
"scalingType": "LOG"

},
...

]
)

If the layer number of your model is a searchable hyper-parameters, you can also set the cutPara and cutFunc properly,
to make it connected with your layer number hyper-parameters of model.

'''
Suppose the layer number of your model is of the following forms:
{

'parameterName': 'layer_number',
'type': 'INTEGER',
'minValue': 2,
'maxValue': 4,
'scalingType': 'LOG'

}
'''

solver = AutoNodeClassifier(
graph_models=(A_MODEL_WITH_DYNAMIC_LAYERS,),
default_trainer='NodeClassificationLayerDependentImportanceSamplingTrainer',
trainer_hp_space=[

(required) you need to set the trainer_hp_space properly.
{

'parameterName': 'sampled_node_sizes',
'type': 'NUMERICAL_LIST',
"numericalType": "INTEGER",
"length": 4, # max length
"cutPara": ("layer_number",), # link with layer_number
"cutFunc": lambda x:x[0], # link with layer_number
"minValue": [200,200,200,200],
"maxValue": [1000,1000,1000,1000],
"scalingType": "LOG"

},
...

]
)

Similarly, if you want to use NodeClassificationNeighborSamplingTrainer, you need to make sure setting the
hyper-parameter sampling_sizes the same length as the layer number of your model. For example:

'''
Suppose the layer number of your model is of the following forms:
{

'parameterName': 'layer_number',
'type': 'INTEGER',

(continues on next page)

18 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

'minValue': 2,
'maxValue': 4,
'scalingType': 'LOG'

}
'''

solver = AutoNodeClassifier(
graph_models=(A_MODEL_WITH_DYNAMIC_LAYERS,),
default_trainer='NodeClassificationNeighborSamplingTrainer',
trainer_hp_space=[

(required) you need to set the trainer_hp_space properly.
{

'parameterName': 'sampling_sizes',
'type': 'NUMERICAL_LIST',
"numericalType": "INTEGER",
"length": 4, # max length
"cutPara": ("layer_number",), # link with layer_number
"cutFunc": lambda x:x[0], # link with layer_number
"minValue": [20,20,20,20],
"maxValue": [100,100,100,100],
"scalingType": "LOG"

},
...

]
)

You can also pass a trainer inside model list directly. A brief example is demonstrated as follows:

ladies_sampling_trainer = NodeClassificationLayerDependentImportanceSamplingTrainer(
model='gcn', num_features=dataset.num_features, num_classes=dataset.num_classes, ...

)

ladies_sampling_trainer.hyper_parameter_space = [
(required) you need to set the trainer_hp_space properly.
{

'parameterName': 'sampled_node_sizes',
'type': 'NUMERICAL_LIST',
"numericalType": "INTEGER",
"length": 4, # max length
"cutPara": ("num_layers",), # link with layer_number
"cutFunc": lambda x:x[0], # link with layer_number
"minValue": [200,200,200,200],
"maxValue": [1000,1000,1000,1000],
"scalingType": "LOG"

},
...

]

AutoNodeClassifier(graph_models=(ladies_sampling_trainer,), ...)

3.5. AutoGL Trainer 19

AutoGL, Release v0.2.0rc0

3.6 Hyper Parameter Optimization

We support black box hyper parameter optimization in variant search space.

3.6.1 Search Space

Three types of search space are supported, use dict in python to define your search space. For numerical list search
space. You can either assign a fixed length for the list, if so, you need not provide cutPara and cutFunc. Or you can
let HPO cut the list to a certain length which is dependent on other parameters. You should provide those parameters’
names in curPara and the function to calculate the cut length in “cutFunc”.

numerical search space:
{

"parameterName": "xxx",
"type": "DOUBLE" / "INTEGER",
"minValue": xx,
"maxValue": xx,
"scalingType": "LINEAR" / "LOG"

}

numerical list search space:
{

"parameterName": "xxx",
"type": "NUMERICAL_LIST",
"numericalType": "DOUBLE" / "INTEGER",
"length": 3,
"cutPara": ("para_a", "para_b"),
"cutFunc": lambda x: x[0] - 1,
"minValue": [xx,xx,xx],
"maxValue": [xx,xx,xx],
"scalingType": "LINEAR" / "LOG"

}

categorical search space:
{

"parameterName": xxx,
"type": "CATEGORICAL"
"feasiblePoints": [a,b,c]

}

fixed parameter as search space:
{

"parameterName": xxx,
"type": "FIXED",
"value": xxx

}

How given HPO algorithms support search space is listed as follows:

20 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

Algorithm numerical numerical list categorical fixed
Grid X X
Random X X X X
Anneal X X X X
Bayes X X X X
TPE1 X X X X
CMAES2 X X X X
MOCMAES3 X X X X
Quasi random4 X X X X
AutoNE5 X X X X

3.6.2 Add Your HPOptimizer

If you want to add your own HPOptimizer, the only thing you should do is finishing optimize function in you HPOp-
timizer:

For example, create a random HPO by yourself
import random
from autogl.module.hpo.base import BaseHPOptimizer
class RandomOptimizer(BaseHPOptimizer):

Get essential parameters at initialization
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.max_evals = kwargs.get("max_evals", 2)

The most important thing you should do is completing optimization function
def optimize(self, trainer, dataset, time_limit=None, memory_limit=None):

1. Get the search space from trainer.
space = trainer.hyper_parameter_space + trainer.model.hyper_parameter_space
optional: use self._encode_para (in BaseOptimizer) to pretreat the space
If you use _encode_para, the NUMERICAL_LIST will be spread to DOUBLE or␣

→˓INTEGER, LOG scaling type will be changed to LINEAR, feasible points in CATEGORICAL␣
→˓will be changed to discrete numbers.

You should also use _decode_para to transform the types of parameters back.
current_space = self._encode_para(space)

2. Define your function to get the performance.
def fn(dset, para):

current_trainer = trainer.duplicate_from_hyper_parameter(para)
current_trainer.train(dset)
loss, self.is_higher_better = current_trainer.get_valid_score(dset)
For convenience, we change the score which is higher better to negative,␣

→˓then we should only minimize the score.
(continues on next page)

1 Bergstra, James S., et al. “Algorithms for hyper-parameter optimization.” Advances in neural information processing systems. 2011.
2 Arnold, Dirk V., and Nikolaus Hansen. “Active covariance matrix adaptation for the (1+ 1)-CMA-ES.” Proceedings of the 12th annual confer-

ence on Genetic and evolutionary computation. 2010.
3 Voß, Thomas, Nikolaus Hansen, and Christian Igel. “Improved step size adaptation for the MO-CMA-ES.” Proceedings of the 12th annual

conference on Genetic and evolutionary computation. 2010.
4 Bratley, Paul, Bennett L. Fox, and Harald Niederreiter. “Programs to generate Niederreiter’s low-discrepancy sequences.” ACM Transactions

on Mathematical Software (TOMS) 20.4 (1994): 494-495.
5 Tu, Ke, et al. “Autone: Hyperparameter optimization for massive network embedding.” Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 2019.

3.6. Hyper Parameter Optimization 21

AutoGL, Release v0.2.0rc0

(continued from previous page)

if self.is_higher_better:
loss = -loss

return current_trainer, loss

3. Define the how to get HP suggestions, it should return a parameter dict.␣
→˓You can use history trials to give new suggestions

def get_random(history_trials):
hps = {}
for para in current_space:

Because we use _encode_para function before, we should only deal with␣
→˓DOUBLE, INTEGER and DISCRETE

if para["type"] == "DOUBLE" or para["type"] == "INTEGER":
hp = random.random() * (para["maxValue"] - para["minValue"]) + para[

→˓"minValue"]
if para["type"] == "INTEGER":

hp = round(hp)
hps[para["parameterName"]] = hp

elif para["type"] == "DISCRETE":
feasible_points = para["feasiblePoints"].split(",")
hps[para["parameterName"]] = random.choice(feasible_points)

return hps

4. Run your algorithm. For each turn, get a set of parameters according to␣
→˓history information and evaluate it.

best_trainer, best_para, best_perf = None, None, None
self.trials = []
for i in range(self.max_evals):

in this example, we don't need history trails. Since we pass None to␣
→˓history_trails

new_hp = get_random(None)
optional: if you use _encode_para, use _decode_para as well. para_for_

→˓trainer undos all transformation in _encode_para, and turns double parameter to␣
→˓interger if needed. para_for_hpo only turns double parameter to interger.

para_for_trainer, para_for_hpo = self._decode_para(new_hp)
current_trainer, perf = fn(dataset, para_for_trainer)
self.trials.append((para_for_hpo, perf))
if not best_perf or perf < best_perf:

best_perf = perf
best_trainer = current_trainer
best_para = para_for_trainer

5. Return the best trainer and parameter.
return best_trainer, best_para

22 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

3.7 Neural Architecture Search

We support different neural architecture search algorithm in variant search space. To be more flexible, we modulize
NAS process with three part: algorithm, space and estimator. Different models in different parts can be composed in
some certain constrains. If you want to design your own NAS process, you can change any of those parts according to
your demand.

3.7.1 Usage

You can directly enable architecture search for node classification tasks by passing the algorithms, spaces and estimators
to solver. Following shows an example:

Use graphnas to solve cora
from autogl.datasets import build_dataset_from_name
from autogl.solver import AutoNodeClassifier

solver = AutoNodeClassifier(
feature = 'PYGNormalizeFeatures',
graph_models = (),
hpo = 'tpe',
ensemble = None,
nas_algorithms='rl',
nas_spaces='graphnasmacro',
nas_estimators='scratch'

)

cora = build_dataset_from_name('cora')
solver.fit(cora)

The code above will first find the best architecture in space graphnasmacro using rl search algorithm. Then the
searched architecture will be further optimized through hyperparameter-optimization tpe.

Note: The graph_models argument is not conflict with nas module. You can set graph_models to other hand-
crafted models beside the ones found by nas. Once the architectures are derived from nas module, they act in the same
way as hand-crafted models directly passed through graph_models.

3.7.2 Search Space

The space definition is base on mutable fashion used in NNI, which is defined as a model inheriting BaseSpace There
are mainly two ways to define your search space, one can be performed with one-shot fashion while the other cannot.
Currently, we support following search space:

Space Description
singlepath4 Architectures with several sequential layers with each layer choosing only one path
graphnas1 The graph nas micro search space designed for fully supervised node classification models
graphnasmacro1 The graph nas macro search space designed for semi-superwised node classification models

4 Guo, Zichao, et al. “Single Path One-Shot Neural Architecture Search with Uniform Sampling.” European Conference on Computer Vision,
2019, pp. 544–560.

1 Gao, Yang, et al. “Graph neural architecture search.” IJCAI. Vol. 20. 2020.

3.7. Neural Architecture Search 23

AutoGL, Release v0.2.0rc0

You can also define your own nas search space. If you need one-shot fashion, you should use the function
setLayerChoice and setInputChoice to construct the super network. Here is an example.

For example, create an NAS search space by yourself
from autogl.module.nas.space.base import BaseSpace
from autogl.module.nas.space.operation import gnn_map
class YourOneShotSpace(BaseSpace):

Get essential parameters at initialization
def __init__(self, input_dim = None, output_dim = None):

super().__init__()
must contain input_dim and output_dim in space, or you can initialize these␣

→˓two parameters in function `instantiate`
self.input_dim = input_dim
self.output_dim = output_dim

Instantiate the super network
def instantiate(self, input_dim, output_dim):

must call super in this function
super().instantiate()
self.input_dim = input_dim or self.input_dim
self.output_dim = output_dim or self.output_dim
define two layers with order 0 and 1
self.layer0 = self.setLayerChoice(0, [gnn_map(op,self.input_dim,self.output_

→˓dim)for op in ['gcn', 'gat']])
self.layer1 = self.setLayerChoice(1, [gnn_map(op,self.input_dim,self.output_

→˓dim)for op in ['gcn', 'gat']])
define an input choice two choose from the result of the two layer
self.input_layer = self.setInputChoice(2, n_candidates = 2)

Define the forward process
def forward(self, data):

x, edges = data.x, data.edge_index
x_0 = self.layer0(x, edges)
x_1 = self.layer1(x, edges)
y = self.input_layer([x_0, x_1])
return y

For one-shot fashion, you can directly use following scheme in ``parse_model``
def parse_model(self, selection, device) -> BaseModel:

return self.wrap(device).fix(selection)

Also, you can use the way which does not support one shot fashion. In this way, you can directly copy you model with
few changes. But you can only use sample-based search strategy.

For example, create an NAS search space by yourself
from autogl.module.nas.space.base import BaseSpace, map_nn
from autogl.module.nas.space.operation import gnn_map
here we search from three types of graph convolution with `head` as a parameter
we should search `heads` at the same time with the convolution
from torch_geometric.nn import GATConv, FeaStConv, TransformerConv
class YourNonOneShotSpace(BaseSpace):

Get essential parameters at initialization
def __init__(self, input_dim = None, output_dim = None):

super().__init__()
(continues on next page)

24 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

must contain input_dim and output_dim in space, or you can initialize these␣
→˓two parameters in function `instantiate`

self.input_dim = input_dim
self.output_dim = output_dim

Instantiate the super network
def instantiate(self, input_dim, output_dim):

must call super in this function
super().instantiate()
self.input_dim = input_dim or self.input_dim
self.output_dim = output_dim or self.output_dim
set your choices as LayerChoices
self.choice0 = self.setLayerChoice(0, map_nn(["gat", "feast", "transformer"]),␣

→˓key="conv")
self.choice1 = self.setLayerChoice(1, map_nn([1, 2, 4, 8]), key="head")

You do not need to define forward process here
For non-one-shot fashion, you can directly return your model based on the choices
``YourModel`` must inherit BaseSpace.
def parse_model(self, selection, device) -> BaseModel:

model = YourModel(selection, self.input_dim, self.output_dim).wrap(device)
return model

YourModel can be defined as follows
class YourModel(BaseSpace):

def __init__(self, selection, input_dim, output_dim):
self.input_dim = input_dim
self.output_dim = output_dim
if selection["conv"] == "gat":

conv = GATConv
elif selection["conv"] == "feast":

conv = FeaStConv
elif selection["conv"] == "transformer":

conv = TransformerConv
self.layer = conv(input_dim, output_dim, selection["head"])

def forward(self, data):
x, edges = data.x, data.edge_index
y = self.layer(x, edges)
return y

3.7.3 Performance Estimator

The performance estimator estimates the performance of an architecture. Currently we support following estimators:

Estimator Description
oneshot Directly evaluating the given models without training
scratch Train the models from scratch and then evaluate them

You can also write your own estimator. Here is an example of estimating an architecture without training (used in
one-shot space).

3.7. Neural Architecture Search 25

AutoGL, Release v0.2.0rc0

For example, create an NAS estimator by yourself
from autogl.module.nas.estimator.base import BaseEstimator
class YourOneShotEstimator(BaseEstimator):

The only thing you should do is defining ``infer`` function
def infer(self, model: BaseSpace, dataset, mask="train"):

device = next(model.parameters()).device
dset = dataset[0].to(device)
Forward the architecture
pred = model(dset)[getattr(dset, f"{mask}_mask")]
y = dset.y[getattr(dset, f'{mask}_mask')]
Use default loss function and metrics to evaluate the architecture
loss = getattr(F, self.loss_f)(pred, y)
probs = F.softmax(pred, dim = 1)
metrics = [eva.evaluate(probs, y) for eva in self.evaluation]
return metrics, loss

3.7.4 Search Strategy

The space strategy defines how to find an architecture. We currently support following search strategies:

Strategy Description
random Random search by uniform sampling
rl? Use rl as architecture generator agent
enas2 efficient neural architecture search
darts3 differentiable neural architecture search

Sample-based strategy without weight sharing is simpler than strategies with weight sharing. We show how to define
your strategy here with DFS as an example. If you want to define more complex strategy, you can refer to Darts, Enas
or other strategies in NNI.

from autogl.module.nas.algorithm.base import BaseNAS
class RandomSearch(BaseNAS):

Get the number of samples at initialization
def __init__(self, n_sample):

super().__init__()
self.n_sample = n_sample

The key process in NAS algorithm, search for an architecture given space, dataset␣
→˓and estimator
def search(self, space: BaseSpace, dset, estimator):

self.estimator=estimator
self.dataset=dset
self.space=space

self.nas_modules = []
k2o = get_module_order(self.space)
collect all mutables in the space
replace_layer_choice(self.space, PathSamplingLayerChoice, self.nas_modules)

(continues on next page)

2 Pham, Hieu, et al. “Efficient neural architecture search via parameters sharing.” International Conference on Machine Learning. PMLR, 2018.
3 Liu, Hanxiao, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Architecture Search.” International Conference on Learning Rep-

resentations. 2018.

26 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

replace_input_choice(self.space, PathSamplingInputChoice, self.nas_modules)
sort all mutables with given orders
self.nas_modules = sort_replaced_module(k2o, self.nas_modules)
get a dict cantaining all chioces
selection_range={}
for k,v in self.nas_modules:

selection_range[k]=len(v)
self.selection_dict=selection_range

arch_perfs=[]
define DFS process
self.selection = {}
last_k = list(self.selection_dict.keys())[-1]
def dfs():

for k,v in self.selection_dict.items():
if not k in self.selection:

for i in range(v):
self.selection[k] = i
if k == last_k:

evaluate an architecture
self.arch=space.parse_model(self.selection,self.device)
metric,loss=self._infer(mask='val')
arch_perfs.append([metric, self.selection.copy()])

else:
dfs()

del self.selection[k]
break

dfs()

get the architecture with the best performance
selection=arch_perfs[np.argmax([x[0] for x in arch_perfs])][1]
arch=space.parse_model(selection,self.device)
return arch

Different search strategies should be combined with different search spaces and estimators in usage.

Sapce single path GraphNAS[1] GraphNAS-macro[1]
Random X X X
RL X X X
GraphNAS? X X X
ENAS? X
DARTSPage 26, 3 X

Estimator one-shot Train
Random X
RL X
GraphNAS? X
ENAS? X
DARTSPage 26, 3 X

3.7. Neural Architecture Search 27

AutoGL, Release v0.2.0rc0

3.8 Ensemble

We currently support voting and stacking methods.

3.8.1 Voting

A voter essentially constructs a weighted sum of the predictions of base learners. Given an evaluation metric, the
weights of base learners are specified in some way to maximize the validation score.

We adopt Rich Caruana’s method for weight specification. This method first finds a collection of (possibly redundant)
base learners with equal weights via a greedy search, then specifies the weights in the voter by the number of occurrence
in the collection.

You can customize your own weight specification method by overwriting the _specify_weights method.

An example : use equal weights for all base learners.
class EqualWeightVoting(Voting):

def _specify_weights(self, predictions, label, feval):
return np.ones(self.n_models)/self.n_models
just allocate the same weight for each base learner

3.8.2 Stacking

A stacker trains a meta-model with the predictions of base learners as input to find an optimal combination of these
base learners.

Currently we support generalized linear model (GLM) and gradient boosting model (GBM) as the meta-model.

3.8.3 Create a New Ensembler

You can create your own ensembler by inheriting the base ensembler, and overloading methods fit and ensemble.

An example : use the currently available best model.
from autogl.module.ensemble.base import BaseEnsembler
import numpy as np
class BestModel(BaseEnsembler):

def fit(self, predictions, label, identifiers, feval):
if not isinstance(feval, list):

feval = [feval]
scores = np.array([feval[0].evaluate(pred, label) for pred in predictions]) * (1␣

→˓if feval[0].is_higher_better else -1)
self.scores = dict(zip(identifiers, scores)) # record validation score of base␣

→˓learners
ensemble_pred = predictions[np.argmax(scores)]
return [fx.evaluate(ensemble_pred, label) for fx in feval]

def ensemble(self, predictions, identifiers):
best_idx = np.argmax([self.scores[model_name] for model_name in identifiers]) #␣

→˓choose the currently best model in the identifiers
return predictions[best_idx]

28 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

3.9 AutoGL Solver

AutoGL project use solver to handle the auto-solvation of tasks. Currently, we support the following tasks:

• AutoNodeClassifier for semi-supervised node classification

• AutoGraphClassifier for supervised graph classification

• AutoLinkPredictor for link prediction

3.9.1 Initialization

A solver can either be initialized from its __init__() or from a config dictionary or file.

Initialize from __init__()

If you want to build a solver by __init__(), you need to pass the key modules to it. You can either pass the keywords
of corresponding modules or the initialized instances:

from autogl.solver import AutoNodeClassifier

1. initialize from keywords
solver = AutoNodeClassifier(

feature_module='deepgl',
graph_models=['gat','gcn'],
hpo_module='anneal',
ensemble_module='voting',
device='auto'

)

2. initialize using instances
from autogl.module import AutoFeatureEngineer, AutoGCN, AutoGAT, AnnealAdvisorHPO, Voting
solver = AutoNodeClassifier(

feature_module=AutoFeatureEngineer(),
graph_models=[AutoGCN(device='cuda'), AutoGAT(device='cuda')],
hpo_module=AnnealAdvisorHPO(max_evals=10),
ensemble_module=Voting(size=2),
device='cuda'

)

Where, the argument device means where to perform the training and searching, by setting to auto, the cuda is used
when it is available.

If you want to disable one module, you can set it to None:

solver = AutoNodeClassifier(feature_module=None, hpo_module=None, ensemble_module=None)

You can also pass some important arguments of modules directly to solver, which will automatically be set for you:

solver = AutoNodeClassifier(hpo_module='anneal', max_evals=10)

Refer to autogl.solver for more details of argument default value or important argument lists.

3.9. AutoGL Solver 29

AutoGL, Release v0.2.0rc0

Initialize from config dictionary or file

You can also initialize a solver directly from a config dictionary or file. Currently, the AutoGL solver supports config
file type of yaml or json. You need to use from_config() when you want to initialize in this way:

initialize from config file
path_to_config = 'your/path/to/config'
solver = AutoNodeClassifier.from_config(path_to_config)

initialize from a dictionary
config = {

'models':{'gcn': None, 'gat': None},
'hpo': {'name': 'tpe', 'max_evals': 10},
'ensemble': {'name': 'voting', 'size': 2}

}
solver = AutoNodeClassifier.from_config(config)

Refer to the config dictionary description Config structure for more details.

3.9.2 Optimization

After initializing a solver, you can optimize it on the given datasets (please refer to AutoGL Dataset and autogl.datasets
for creating datasets).

You can use fit() or fit_predict() to perform optimization, which shares similar argument lists:

load your dataset here
dataset = some_dataset()
solver.fit(dataset, inplace=True)

The inplace argument is used for saving memory if set to True. It will modify your dataset in an inplace manner during
feature engineering.

You can also specify the train_split and val_split arguments to let solver auto-split the given dataset. If these
arguments are given, the split dataset will be used instead of the default split specified by the dataset provided. All
the models will be trained on train dataset. Their hyperparameters will be optimized based on the performance of
valid dataset, as well as the final ensemble method. For example:

split 0.2 of total nodes/graphs for train and 0.4 of nodes/graphs for validation,
the rest 0.4 is left for test.
solver.fit(dataset, train_split=0.2, val_split=0.4)

split 600 nodes/graphs for train and 400 nodes/graphs for validation,
the rest nodes are left for test.
solver.fit(dataset, train_split=600, val_split=400)

For the node classification problem, we also support balanced sampling of train and valid: force the number of sampled
nodes in different classes to be the same. The balanced mode can be turned on by setting balanced=True in fit(),
which is by default set to True.

Note: Solver will maintain the models with the best hyper-parameter of each model architecture you pass to solver
(the graph_models argument when initialized). The maintained models will then be ensembled by ensemble module.

30 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

After fit(), solver maintains the performances of every single model and the ensemble model in one leaderboard
instance. You can output the performances on valid dataset by:

get current leaderboard of the solver
lb = solver.get_leaderboard()
show the leaderboard info
lb.show()

You can refer to the leaderboard documentation in autogl.solver for more usage.

3.9.3 Prediction

After optimized on the given dataset, you can make predictions using the fitted solver.

Prediction using ensemble

You can use the ensemble model constructed by solver to make the prediction, which is recommended and is the default
choice:

solver.predict()

If you do not pass any dataset, the dataset during fitting will be used to give the prediction.

You can also pass the dataset when predicting, please make sure the inplaced argument is properly set.

solver.predict(dataset, inplaced=True, inplace=True)

The predict() function also has inplace argument, which is the same as the one in fit(). As for the inplaced, it
means whether the passed dataset is already modified inplace or not (probably by fit() function). If you use fit()
before, please make the inplaced of predict() stay the same with inplace in fit().

Prediction using one single model

You can also make the prediction using the best single model the solver maintains by:

solver.predict(use_ensemble=False, use_best=True)

Also, you can name the single model maintained by solver to make predictions.

solver.predict(use_ensemble=False, use_best=False, name=the_name_of_model)

The names of models can be derived by calling solver.trained_models.keys(), which is the same as the names
maintained by the leaderboard of solver.

Note: By default, solver will only make predictions on the test split of given datasets. Please make sure the passed
dataset has the test split when making predictions. You can also change the default prediction split by setting argument
mask to train or valid.

3.9. AutoGL Solver 31

AutoGL, Release v0.2.0rc0

3.9.4 Appendix

Config structure

The structure of the config file or config is introduced here. The config should be a dict, with five optional keys, namely
feature, models, trainer, hpo and ensemble. You can simply do not add one field if you want to use the default
option. The default value of each module is the same as the one in __init__().

For key feature, hpo and ensemble, their corresponding values are all dictionaries, which contains one must key name
and other arguments when initializing the corresponding modules. The value of key name specifies which algorithm
should be used, where None can be passed if you do not want to enable the module. Other arguments are used to
initialize the specified algorithm.

For key trainer, you should specify the hyperparameter space of trainer. See AutoGL Trainer or autogl.module.train
for the detailed hyperparameter space of different trainers.

For key models, the value is another dictionary with its keys being models that need optimized and the corresponding
values being the hyperparameter space of that model. See AutoGL Model or autogl.module.model for the detailed
hyperparameter space of different models.

Below shows some examples of the config dictionary.

config_for_node_classification = {
'feature': {

'name': 'deepgl', # name of auto feature module
following are the deepgl specified auto feature engineer arguments
'fixlen': 100,
'max_epoch': 5

},
'models': {

'gcn':
specify the hp space of gcn
[

{'parameterName': 'num_layers', 'type': 'DISCRETE', 'feasiblePoints': '2,3,4
→˓'},

{'parameterName': 'hidden', 'type': 'NUMERICAL_LIST', 'numericalType':
→˓'INTEGER', 'length': 3,

'minValue': [8, 8, 8], 'maxValue': [64, 64, 64], 'scalingType': 'LOG'},
{'parameterName': 'dropout', 'type': 'DOUBLE', 'maxValue': 0.9, 'minValue':␣

→˓0.1, 'scalingType': 'LINEAR'},
{'parameterName': 'act', 'type': 'CATEGORICAL', 'feasiblePoints': ['leaky_

→˓relu', 'relu', 'elu', 'tanh']}
],
'gat': None, # set to None to use default hp space
'gin': None

}
'trainer': [

trainer hp space
{'parameterName': 'max_epoch', 'type': 'INTEGER', 'maxValue': 300, 'minValue':␣

→˓10, 'scalingType': 'LINEAR'},
{'parameterName': 'early_stopping_round', 'type': 'INTEGER', 'maxValue': 30,

→˓'minValue': 10, 'scalingType': 'LINEAR'},
{'parameterName': 'lr', 'type': 'DOUBLE', 'maxValue': 0.001, 'minValue': 0.0001,

→˓'scalingType': 'LOG'},
{'parameterName': 'weight_decay', 'type': 'DOUBLE', 'maxValue': 0.005, 'minValue

→˓': 0.0005, 'scalingType': 'LOG'} (continues on next page)

32 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

(continued from previous page)

],
'hpo': {

'name': 'autone', # name of hpo module
following are the autone specified auto hpo arguments
'max_evals': 10,
'subgraphs': 10,
'sub_evals': 5

},
'ensemble': {

'name': 'voting', # name of ensemble module
following are the voting specified auto ensemble arguments
'size': 2

}
}

config_for_graph_classification = {
'feature': None, # set to None to disable this module
do not add field `model` to use default settings of solver
'trainer': [

trainer hp space
{'parameterName': 'max_epoch', 'type': 'INTEGER', 'maxValue': 300, 'minValue':␣

→˓10, 'scalingType': 'LINEAR'},
{'parameterName': 'batch_size', 'type': 'INTEGER', 'maxValue': 128, 'minValue':␣

→˓32, 'scalingType': 'LOG'},
{'parameterName': 'early_stopping_round', 'type': 'INTEGER', 'maxValue': 30,

→˓'minValue': 10, 'scalingType': 'LINEAR'},
{'parameterName': 'lr', 'type': 'DOUBLE', 'maxValue': 1e-3, 'minValue': 1e-4,

→˓'scalingType': 'LOG'},
{'parameterName': 'weight_decay', 'type': 'DOUBLE', 'maxValue': 5e-3, 'minValue

→˓': 5e-4, 'scalingType': 'LOG'},
],
'hpo': {

'name': 'random', # name of hpo module
following are the random specified auto hpo arguments
'max_evals': 10

},
'ensemble': None # set to None to disable this module

}

3.10 autogl.data

class autogl.data.Batch(batch=None, **kwargs)
A plain old python object modeling a batch of graphs as one big (dicconnected) graph. With cogdl.data.Data
being the base class, all its methods can also be used here. In addition, single graphs can be reconstructed via
the assignment vector batch, which maps each node to its respective graph identifier.

cumsum(key, item)
If True, the attribute keywith content item should be added up cumulatively before concatenated together.

Note: This method is for internal use only, and should only be overridden if the batch concatenation

3.10. autogl.data 33

AutoGL, Release v0.2.0rc0

process is corrupted for a specific data attribute.

static from_data_list(data_list, follow_batch=[])
Constructs a batch object from a python list holding torch_geometric.data.Data objects. The assign-
ment vector batch is created on the fly. Additionally, creates assignment batch vectors for each key in
follow_batch.

property num_graphs
Returns the number of graphs in the batch.

to_data_list()
Reconstructs the list of torch_geometric.data.Data objects from the batch object. The batch object
must have been created via from_data_list() in order to be able reconstruct the initial objects.

class autogl.data.Data(x=None, edge_index=None, edge_attr=None, y=None, pos=None)
A plain old python object modeling a single graph with various (optional) attributes:

Parameters

• x (Tensor, optional) – Node feature matrix with shape [num_nodes,
num_node_features]. (default: None)

• edge_index (LongTensor, optional) – Graph connectivity in COO format with shape
[2, num_edges]. (default: None)

• edge_attr (Tensor, optional) – Edge feature matrix with shape [num_edges,
num_edge_features]. (default: None)

• y (Tensor, optional) – Graph or node targets with arbitrary shape. (default: None)

• pos (Tensor, optional) – Node position matrix with shape [num_nodes,
num_dimensions]. (default: None)

The data object is not restricted to these attributes and can be extented by any other additional data.

__call__(*keys)
Iterates over all attributes *keys in the data, yielding their attribute names and content. If *keys is not
given this method will iterative over all present attributes.

__contains__(key)
Returns True, if the attribute key is present in the data.

__getitem__(key)
Gets the data of the attribute key.

__inc__(key, value)
“Returns the incremental count to cumulatively increase the value of the next attribute of keywhen creating
batches.

Note: This method is for internal use only, and should only be overridden if the batch concatenation
process is corrupted for a specific data attribute.

__iter__()
Iterates over all present attributes in the data, yielding their attribute names and content.

__len__()
Returns the number of all present attributes.

__setitem__(key, value)
Sets the attribute key to value.

34 Chapter 3. Modules

AutoGL, Release v0.2.0rc0

apply(func, *keys)
Applies the function func to all attributes *keys. If *keys is not given, func is applied to all present
attributes.

cat_dim(key, value)
Returns the dimension in which the attribute key with content value gets concatenated when creating
batches.

Note: This method is for internal use only, and should only be overridden if the batch concatenation
process is corrupted for a specific data attribute.

contiguous(*keys)
Ensures a contiguous memory layout for all attributes *keys. If *keys is not given, all present attributes
are ensured to have a contiguous memory layout.

static from_dict(dictionary)
Creates a data object from a python dictionary.

get_label_number()
Get the number of labels in this dataset as dict.

is_coalesced()
Returns True, if edge indices are ordered and do not contain duplicate entries.

property keys
Returns all names of graph attributes.

property num_edges
Returns the number of edges in the graph.

property num_features
Returns the number of features per node in the graph.

random_splits_mask(train_ratio, val_ratio, seed=None)
If the data has masks for train/val/test, return the splits with specific ratio.

Parameters

• train_ratio (float) – the portion of data that used for training.

• val_ratio (float) – the portion of data that used for validation.

• seed (int) – random seed for splitting dataset.

random_splits_mask_class(num_train_per_class, num_val, num_test, seed=None)
If the data has masks for train/val/test, return the splits with specific number of samples from every class
for training.

Parameters

• num_train_per_class (int) – the number of samples from every class used for training.

• num_val (int) – the total number of nodes that used for validation.

• num_test (int) – the total number of nodes that used for testing.

• seed (int) – random seed for splitting dataset.

random_splits_nodes(train_ratio, val_ratio, seed=None)
If the data uses id of nodes for train/val/test, return the splits with specific ratio.

Parameters

3.10. autogl.data 35

AutoGL, Release v0.2.0rc0

• train_ratio (float) – the portion of data that used for training.

• val_ratio (float) – the portion of data that used for validation.

• seed (int) – random seed for splitting dataset.

random_splits_nodes_class(num_train_per_class, num_val, num_test, seed=None)
If the data uses id of nodes for train/val/test, return the splits with specific number of samples from every
class for training.

Parameters

• num_train_per_class (int) – the number of samples from every class used for training.

• num_val (int) – the total number of nodes that used for validation.

• num_test (int) – the total number of nodes that used for testing.

• seed (int) – random seed for splitting dataset.

to(device, *keys)
Performs tensor dtype and/or device conversion to all attributes *keys. If *keys is not given, the conver-
sion is applied to all present attributes.

class autogl.data.DataListLoader(dataset, batch_size=1, shuffle=True, **kwargs)
Data loader which merges data objects from a cogdl.data.dataset to a python list.

Note: This data loader should be used for multi-gpu support via cogdl.nn.DataParallel.

Parameters

• dataset (Dataset) – The dataset from which to load the data.

• batch_size (int, optional) – How may samples per batch to load. (default: 1)

• shuffle (bool, optional) – If set to True, the data will be reshuffled at every epoch
(default: True)

class autogl.data.DataLoader(dataset, batch_size=1, shuffle=True, **kwargs)
Data loader which merges data objects from a cogdl.data.dataset to a mini-batch.

Parameters

• dataset (Dataset) – The dataset from which to load the data.

• batch_size (int, optional) – How may samples per batch to load. (default: 1)

• shuffle (bool, optional) – If set to True, the data will be reshuffled at every epoch
(default: True)

class autogl.data.Dataset(root, transform=None, pre_transform=None, pre_filter=None)
Dataset base class for creating graph datasets. See here for the accompanying tutorial.

Parameters

• root (string) – Root directory where the dataset should be saved.

• transform (callable, optional) – A function/transform that takes in an cogdl.data.
Data object and returns a transformed version. The data object will be transformed before
every access. (default: None)

36 Chapter 3. Modules

https://rusty1s.github.io/pycogdl/build/html/notes/create_dataset.html

AutoGL, Release v0.2.0rc0

• pre_transform (callable, optional) – A function/transform that takes in an cogdl.
data.Data object and returns a transformed version. The data object will be transformed
before being saved to disk. (default: None)

• pre_filter (callable, optional) – A function that takes in an cogdl.data.Data ob-
ject and returns a boolean value, indicating whether the data object should be included in the
final dataset. (default: None)

__getitem__(idx)
Gets the data object at index idx and transforms it (in case a self.transform is given).

__len__()
The number of examples in the dataset.

download()
Downloads the dataset to the self.raw_dir folder.

get(idx)
Gets the data object at index idx.

property get_label_number
Get the number of labels in this dataset as dict.

property num_features
Returns the number of features per node in the graph.

process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names
The name of the files to find in the self.processed_dir folder in order to skip the processing.

property processed_paths
The filepaths to find in the self.processed_dir folder in order to skip the processing.

property raw_file_names
The name of the files to find in the self.raw_dir folder in order to skip the download.

property raw_paths
The filepaths to find in order to skip the download.

class autogl.data.DenseDataLoader(dataset, batch_size=1, shuffle=True, **kwargs)
Data loader which merges data objects from a cogdl.data.dataset to a mini-batch.

Note: To make use of this data loader, all graphs in the dataset needs to have the same shape for each its
attributes. Therefore, this data loader should only be used when working with dense adjacency matrices.

Parameters

• dataset (Dataset) – The dataset from which to load the data.

• batch_size (int, optional) – How may samples per batch to load. (default: 1)

• shuffle (bool, optional) – If set to True, the data will be reshuffled at every epoch
(default: True)

autogl.data.download_url(url, folder, name=None, log=True)
Downloads the content of an URL to a specific folder.

Parameters

3.10. autogl.data 37

AutoGL, Release v0.2.0rc0

• url (string) – The url.

• folder (string) – The folder.

• log (bool, optional) – If False, will not print anything to the console. (default: True)

autogl.data.extract_tar(path, folder, mode='r:gz', log=True)
Extracts a tar archive to a specific folder.

Parameters

• path (string) – The path to the tar archive.

• folder (string) – The folder.

• mode (string, optional) – The compression mode. (default: "r:gz")

• log (bool, optional) – If False, will not print anything to the console. (default: True)

autogl.data.extract_zip(path, folder, log=True)
Extracts a zip archive to a specific folder.

Parameters

• path (string) – The path to the tar archive.

• folder (string) – The folder.

• log (bool, optional) – If False, will not print anything to the console. (default: True)

3.11 autogl.datasets

We integrate the datasets from PyTorch Geometric, CogDL and OGB. We also list some datasets from CogDL for
simplicity.

3.12 autogl.module.feature

Several feature engineering operations are collected manually, or from PyTorch Geometric, NetworkX, etc.

3.13 autogl.module.model

3.14 autogl.module.train

3.15 autogl.module.hpo

3.16 autogl.module.nas

3.17 autogl.module.ensemble

3.18 autogl.solver

38 Chapter 3. Modules

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://cogdl.readthedocs.io/en/latest/autoapi/datasets/index.html
https://ogb.stanford.edu/docs/dataset_overview/

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

39

AutoGL, Release v0.2.0rc0

40 Chapter 4. Indices and tables

PYTHON MODULE INDEX

a
autogl.data, 33

41

AutoGL, Release v0.2.0rc0

42 Python Module Index

INDEX

Symbols
__call__() (autogl.data.Data method), 34
__contains__() (autogl.data.Data method), 34
__getitem__() (autogl.data.Data method), 34
__getitem__() (autogl.data.Dataset method), 37
__inc__() (autogl.data.Data method), 34
__iter__() (autogl.data.Data method), 34
__len__() (autogl.data.Data method), 34
__len__() (autogl.data.Dataset method), 37
__setitem__() (autogl.data.Data method), 34

A
apply() (autogl.data.Data method), 34
autogl.data

module, 33

B
Batch (class in autogl.data), 33

C
cat_dim() (autogl.data.Data method), 35
contiguous() (autogl.data.Data method), 35
cumsum() (autogl.data.Batch method), 33

D
Data (class in autogl.data), 34
DataListLoader (class in autogl.data), 36
DataLoader (class in autogl.data), 36
Dataset (class in autogl.data), 36
DenseDataLoader (class in autogl.data), 37
download() (autogl.data.Dataset method), 37
download_url() (in module autogl.data), 37

E
extract_tar() (in module autogl.data), 38
extract_zip() (in module autogl.data), 38

F
from_data_list() (autogl.data.Batch static method),

34
from_dict() (autogl.data.Data static method), 35

G
get() (autogl.data.Dataset method), 37
get_label_number (autogl.data.Dataset property), 37
get_label_number() (autogl.data.Data method), 35

I
is_coalesced() (autogl.data.Data method), 35

K
keys (autogl.data.Data property), 35

M
module

autogl.data, 33

N
num_edges (autogl.data.Data property), 35
num_features (autogl.data.Data property), 35
num_features (autogl.data.Dataset property), 37
num_graphs (autogl.data.Batch property), 34

P
process() (autogl.data.Dataset method), 37
processed_file_names (autogl.data.Dataset prop-

erty), 37
processed_paths (autogl.data.Dataset property), 37

R
random_splits_mask() (autogl.data.Data method), 35
random_splits_mask_class() (autogl.data.Data

method), 35
random_splits_nodes() (autogl.data.Data method),

35
random_splits_nodes_class() (autogl.data.Data

method), 36
raw_file_names (autogl.data.Dataset property), 37
raw_paths (autogl.data.Dataset property), 37

T
to() (autogl.data.Data method), 36
to_data_list() (autogl.data.Batch method), 34

43

	AutoGL
	Installation
	Requirements
	Installation
	Install from pip & conda
	Install from source
	Install for development

	Modules
	Quick Start
	AutoGL Learning

	AutoGL Dataset
	Supporting datasets
	OGB datasets
	Create a dataset via URL
	Create a dataset locally

	AutoGL Feature Engineering
	Quick Start
	List of FE base names
	Create Your Own FE

	AutoGL Model
	Lazy Initialization
	Define your own model and automodel
	General customization
	Model for link prediction
	Model with sampling support

	AutoGL Trainer
	Lazy Initialization
	Train and Predict
	Node Classification with Sampling

	Hyper Parameter Optimization
	Search Space
	Add Your HPOptimizer

	Neural Architecture Search
	Usage
	Search Space
	Performance Estimator
	Search Strategy

	Ensemble
	Voting
	Stacking
	Create a New Ensembler

	AutoGL Solver
	Initialization
	Initialize from __init__()
	Initialize from config dictionary or file

	Optimization
	Prediction
	Prediction using ensemble
	Prediction using one single model

	Appendix
	Config structure

	autogl.data
	autogl.datasets
	autogl.module.feature
	autogl.module.model
	autogl.module.train
	autogl.module.hpo
	autogl.module.nas
	autogl.module.ensemble
	autogl.solver

	Indices and tables
	Python Module Index
	Index

